Unique test sets from the technology leader

OMICRON's commitment to innovation is evident in the outstanding features and the absolute quality of its test sets. Making use of leadingedge technology in both development and quality assurance, OMICRON has set new standards for advanced three-phase testing equipment in terms of flexibility, accuracy, portability and reliability.

OMICRON's PC-controlled test sets generate the test signals digitally (DSP technology), resulting in highly accurate testing signals even at small amplitudes. The electronic design of the internal amplifiers and the use of switch-mode power supply units ensure a minimum of weight and volume is achieved. Independent channels with low-level signals are available at the back of the test sets, which can be used to control external amplifiers for applications requiring more signal channels or higher currents, voltages or power. The low-level signals can also be used for test objects which have a low-level input facility.

All generators are continuously and independently adjustable in amplitude, phase and frequency. No switching of ranges is necessary. All current and voltage outputs are fully overload and short-circuit proof and are protected against external high-voltage transient signals and overtemperature.

Every device is developed according to international IEC standards and verified by independent certification bodies including UL and TÜV.

CMC 256-4 Phase Voltage/6 Phase Current Test Set

The universal solution for old and new generation relays, all kinds of meters and transducers. The first choice for applications requiring the highest versatility (commissioning, etc.). Unique measurement and transient recording functionality.
4×300 V outputs
$6 \times 12.5 \mathrm{~A} / 3 \times 25$ A outputs

dc measuring inputs
$10 \times$ binary inputs /
Analog measurement inputs (with EnerLyzer option)
Supplements all ten binary inputs with analog measurement functions for voltages of up to 600 V and currents (with current clamps). Amplitude, frequency, phase, power measurement, harmonics, recording and analysis of transient signals, event trigger etc.. The inputs are usable with current clamps with voltage output or external shunt and standard current clamp.

CMC Test Set Options

Equipped with the hardware option EP (Extended Precision), a CMC test set becomes an ideal instrument for the testing of energy meters. Due to the extremely high accuracy of the EP option, it is possible to test energy meters of up to class 0.2 S according to IEC 62053 (formerly 60687, $0 \ldots 300 \mathrm{~V}$ three-phase for a CMC 256-EP) without an additional reference meter. This extremely high precision also makes a CMC 256 ideal for relay manufacturers for their development process, type testing, acceptance testing, device calibration, or product demonstration.

The technical data section on the following pages provides detailed information on where a $E P$ version differs from a standard $C M C$.

The EP option can be ordered together with a new unit or an existing CMC 256 can be upgraded at any later stage.

NET-1

Several developments in computer and communication technologies have created a need for alternative communication interfaces in protection test sets.

The new way of controlling the test set is performed via Ethernet. This proven network technology offers many new opportunities in excess of just replacing the parallel interface, like controlling the test set over a network.

Another advantage is the support of substation communication according to IEC 61850 and UCA 2.0. These protocols are also based on Ethernet.

The NET-1 option for CMC 256 replaces the parallel interface and provides the new control interface for the test set. It is required for interfacing to Ethernet-based substation communication protocols.

The NET-1 option has two Ethernet interfaces:

- 10/100 Mbit/s "copper" (10/100Base-TX, auto-sensing, auto-crossover, RJ45 connector for CAT5 twisted pair cables).
- $100 \mathrm{Mbit} / \mathrm{s}$ fiber optic (100Base-FX, MTRJ connector). Support for specific substation protocols, such as the GOOSE/GSSE messaging according to IEC 61850-8-1 or UCA 2.0 can be provided by future firmware options.

On the PC controlling the test set, this option requires Test Universe Software Version 2.0 running on Microsoft Windows 2000 or Windows XP operating systems.

The NET-1 option can be ordered with a new device or as an upgrade for a CMC 256. Test sets with the NET-1 option no longer have a parallel port interface.

Ordering Number	Package/Option
VE002517	Basic Package
VE002417	Protection Package
VE002317	Advanced Protection Package
VE002617	Meter Package
VE002217	Measurement Package
VE002117	Universal Package
VEHO1002	Option EP if ordered with a new unit
VEHO0002	Option EP if ordered as an upgrade
VEHO1009'	Option NET-1 if ordered with a new unit
VEHO1010	Option NET-1 if ordered as an upgrade

[^0]| Voltage generators/-amplifiers
 Setting range 4-phase ac (L-N)
 Power 3-phase ac (L-N)
 1-phase ac (L-L)
 dc (L-N)
 3-phase ac (L-N)
 V-phac (L-N)
 1-phase ac (L-N)
 1-phase ac (L-L) | |
| :--- | :--- |

CMC 256 Standard
with EP Option
Accuracy
error $<0.025 \%$ typ. \quad error $<0.02 \%$ typ.
(<0.1 \% guar.) at $30 \ldots 300 \mathrm{~V} \quad(<0.05 \%$ guar. $)$ at $30 \ldots 300 \mathrm{~V}$
<0.015 \% typ. (< 0.05 \% guar.)
150 V / 300 V
$5 \mathrm{mV} / 10 \mathrm{mV}$ in range $150 \mathrm{~V} / 300 \mathrm{~V}$
4 mm banana sockets/amplifier combination socket (VL1,2,3+N)

error <0.03 \% typ. (<0.1 \% guar.) error $<0.02 \%$ typ. ($<0.05 \%$ guar.)
<0.025 \% typ. (< 0.07 \% guar.)
1.25 A / 12.5 A (Group A, B) / 2.5 A / 25 A (Group A II B)
$50 \mu \mathrm{~A} / 100 \mu \mathrm{~A} / 500 \mu \mathrm{~A} / 1 \mathrm{~mA}$
10 Vrms, 15 Vpk / 40 Vrms, 60 Vpk
4mm banana sockets/amplifier combination socket (Group A only)

[^1]

[^2]
Tedanical wata

CMC 256

Binary outputs, relays

Type

Number
Break capacity ac
Break capacity dc
Connection
Binary outputs, transistor

Type
Number
Update rate
Imax
Connection

dc voltage measuring input
Measuring range
Accuracy
Input impedance
Connection

dc current measuring input

Measuring range
Accuracy
Input impedance
Connection

Analog ac+dc measuring inputs ${ }^{3}$

Type
Number
Nominal input ranges (rms values)
Amplitude accuracy
Bandwidth
Sampling frequency
Input impedance
Transient input buffer at 28 kHz
Transient input buffer at 3 kHz
Transient trigger
Measurement functions

Input overload indication
Input protection
Max. input voltage
Galvanic isolation
Connection

Power supply

Nominal input voltage
Permissible input voltage
Nominal frequency
Permissible frequency range
Power consumption
Rated current
Connection
potential-free relay contacts, software controlled 4
Vmax: 300 Vac / Imax: 8 A / Pmax: 2000 VA
Vmax: 300 Vdc / Imax: 8 A / Pmax: 50 W
4 mm banana sockets
open collector transistor outputs
4
10 kHz
5 mA
16 pin combination socket (rear side)
$0 \ldots \pm 10 \mathrm{~V}$
error $<0.003 \%$ typ. (< 0.02% guar.)
$1 \mathrm{M} \Omega$
4 mm banana sockets
$0 \ldots \pm 1 \mathrm{~mA}, 0 \ldots \pm 20 \mathrm{~mA}$
error $<0.003 \%$ typ. ($<0.02 \%$ guar.)
15Ω
4 mm banana socket
$\mathrm{ac}+\mathrm{dc}$ analog voltage inputs
10
$100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}, 600 \mathrm{~V}$
error $<0.06 \%$ typ. ($<0.15 \%$ guar.)
dc ... 10 kHz
$28.44 \mathrm{kHz}, 9.48 \mathrm{kHz}, 3.16 \mathrm{kHz}$
$500 \mathrm{k} \Omega / / 50 \mathrm{pF}$
3.5 s for 10 input channels / 35 s for 1 input channel

31 s for 10 input channels / 5 min. for 1 input channel
threshold voltage, power quality trigger: sag, swell, harmonic, frequency, frequency change, notch
Idc, Vdc, lac, Vac, phase, frequency, power, energy, harmonics, transient recording capability for all channels
Yes
Yes
600 Vrms (850 Vpk)
5 groups ($2+2+2+2+2$)
4 mm banana sockets (combined with binary inputs)

110 ... 240 Vac, 1-phase
99 ... 264 Vac
$50 / 60 \mathrm{~Hz}$
45 ... 65 Hz
1.2 kVA at $115 \mathrm{~V}^{4} / 1.6 \mathrm{kVA}$ at 230 V

10 A
Standard ac socket (IEC 60320)

[^3]| | |
| :--- | :--- |
| Environmental conditions | CMC 256 |
| Operation temperature | $0 \ldots+50^{\circ} \mathrm{C}\left(+32 \ldots+122^{\circ} \mathrm{F}\right)^{5}$ |
| Storage temperature | $-25 \ldots+70^{\circ} \mathrm{C}\left(-13 \ldots+158^{\circ} \mathrm{F}\right)$ |
| Humidity range | Relative humidity $5 \ldots 95 \%$, non-condensing |
| Vibration | IEC $68-2-6\left(20 \mathrm{~m} / \mathrm{s}^{2}\right.$ at $\left.10 \ldots 150 \mathrm{~Hz}\right)$ |
| Shock | IEC $68-2-27(15 \mathrm{~g} / 11 \mathrm{~ms}$ half-sine $)$ |

[^4]
[^0]: ${ }^{1}$ The CMC 256 can have both options, EP and NET-1, simultaneously installed.

[^1]: THD + N: Values at $50 / 60 \mathrm{~Hz}$ with 20 kHz bandwidth

[^2]: 2 Data are valid for set value from $0.1 \ldots 12.5 \mathrm{~A}$ (current amplifier group A or B) at $50 / 60 \mathrm{~Hz}$ Permissible load current outputs:

 Range $1.25 \mathrm{~A}: 0 \ldots 1 \Omega$ and $\max .1 \mathrm{VA}, \cos \varphi=0.5 \ldots 1$
 Range $12.5 \mathrm{~A}: 0 \ldots 0.5 \Omega$ and $\max .6 \mathrm{VA}, \cos \varphi=0.5 \ldots 1$.
 Permissible load voltage outputs:
 max. 10 VA at $50 \mathrm{~V} \ldots$ full scale voltage (CMC 156: $125 \mathrm{~V} / \mathrm{CMC} 256: 300 \mathrm{~V}), \cos \varphi=0.5 \ldots 1$.

[^3]: ${ }^{3}$ Only in connection with the EnerLyzer option. Up to three inputs can be used for measuring rms values without the EnerLyzer option.
 4 For line input voltages below 150 V , a derating of the simultaneously available sum output power of the voltage/current amplifiers and the AuxDC will occur. All other technical specifications (e.g. the maximum output power of a single amplifier) are not affected.

[^4]: ${ }^{5}$ For an operational temperature above $+30^{\circ} \mathrm{C}$ a duty cycle of up to 50% may apply.

 Guaranteed values valid over one year within $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F} \pm 10^{\circ} \mathrm{F}\right)$, in the frequency range of $10 \ldots 100 \mathrm{~Hz}$ at nominal value, analog measurement inputs at full-scale value. Specifications for three-phase systems under symmetrical conditions ($0^{\circ}, 120^{\circ}, 240^{\circ}$).

